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Abstract: The Hy performance specification for one-
dimensional systems has been known to be analytically
and practically meaningful and widely used in the anal-
ysis and design of control and filtering systems. How-
ever, it is still of little use in the analysis and design
of two-dimensional systems due to the structural and
dynamical complexity of two-dimensional systems. In
this paper, we extend the classical definition of the Ha
performance to two-dimensional systems and present
a sufficient condition for evaluation of the Hs perfor-

- mance of two-dimensional systems in Roesser model.
Using this condition and the existing bounded real
lemma for two-dimensional systems, we develop sys-
tematic design methods for mixed Hy/H,, and robust
Hy/H . control of two-dimensional systems with poly-
topic uncertainty. It is worth pointing out that our
robust control approach can also be applied to give a
solution to the dynamic output feedback control of one-
dimensional systems with polytopic uncertainty which
has not been solved in existing literature.

Keywords: H; control, Hy, control, Optimal control,
Two-dimensional systems.

1 Introduction

Many processes in practical applications are two-
dimensional systems which exist in sound, seismic and
underwater signal propagation, visual recognition of
robotic systems, thermal processes, etc. Early work
on control of 2-D systems can be found in [5, 6, 14].
Recently, there are a number of results reported on
control and filtering of 2-D systems. Among these,
[1, 2} developed a systematic approach to the solutions
of H., and robust control and filtering of 2-D systems
in different system models. The results in {1, 2| are
based on a bounded real lemma for 2-D systems and
the solutions are computed using a linear matrix in-
equality (LMT) technique. In [13] a solution for mixed
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H,/H.,,. filtering of 2-D systems is presented using the
LMI technique, where a generalized Hs norm is defined
as the square of the peak amplitude of the output when
the total energy of the past inputs is no greater than
unity. Parallel to 1-D optimal control, the 2-D lin-
ear quadratic regulator (LQR) problem is developed
in [7], where the design is based on the solution of sev-
eral canonical equations of a Hamilitionian function.
In [12], the quadratic optimal control of a discretized
2-D plant is reformulated into a 1-D optimal control
problem which is restricted to finite 2-D indices.

Hy optimal control for continuous and discrete time
one-dimensional (1-I}) systems is a classical problem
in linear system theory. The objective of the Hs con-
trol is to minimize the error energy of the system when
the system is subject to unit impulse input or, equiva-
lently, a white noise input of unit variance. Because of
this analytically and practically meaningful specifica-
tion, the Hy problem and solution has been well stud-
ied and applied for several decades. However, the 1-D
optimal control problem and its solution has not been
systematically extended to the optimal control of 2-D
systems, because of the structural and dynamical com-

_plexity of 2-D systems which significantly differ from

1-1) systerhs. So far the existing result of optimal con-
trol of 2-D systems either used a different definition of
the problem, such as the generalized H, norm in [13],
or restricted the range of the 2-D system solution, such
as the 1-D equivalent optimal control solution in [12]. .

In this paper, we consider linear discrete 2-D systems in
Roesser model [10]. We will extend the definition of the
Hs performance specification for 1-D systems to 2-D
systems and derive a sufficient condition for evaluation
of the 2-D system H> performance. This condition is
not necessary due to the difficulty that so far there has
not been a necessary and sufficient condition similar
to that given by the 1-D Lyapunov equation for the
stability of 2-D systems in the state space [8, 9].

Using the condition for the 2-D system H; performance
and the existing bounded real lemma [1, 2] for the 2-D



system H,, performance, we develop a systematic pro-
cedure for the design of the mixed Hg/H, controller
for 2-D systems in terms of LMIs. We further extend
the design to robust Hy/H,, control which can cope
with a general class of systems with polytopic parame-
ter uncertainties. It should be noted that the problem
of output feedback control of systems with polytopic
uncertainty has not been solved even for 1-D systems
due to the difficulty of obtaining a fixed controller from
the solution of the associated LMIs. In this paper, we
present a methodology to overcome this difficulty. Our
solutions to the mixed Ha/H,, and robust Hy/H,
controllers can be efficiently computed from a set of
LMIs or parameterized LMIs. The practical applica-
tion in heat exchanger process shows the feasibility of
the mixed Ho/Hy, control and robust Ha/Hy, control
methods developed in this paper.

2 H; norm of 2-D systems in Roesser
model

Let Zt be the set of nonnegative integers. A 2-D signal
s with s(é,§) € R™, i, € Z* is said to belong to the
2-D f5-space if

lIsllz = J DD sT(i.4)s(i,5) < oo, (1)

i=0 j=0

where || - ||z denotes the £ norm of s.

Roesser model for a 2-D system G : u — ¥ is defined
by the following state equation

zh(i+1,7) zh (i, 5) »
[ i+ | A e | TEUED)
" ' (2)
.y z™(, ] .
i, =C o0+ Dui,

y(i, 7) [ (4, 5) } (& 9)
where z" € R™,z" € R™,u € R™ and y € R' are,
respectively, the horizontal state, vertical state, input
and the output of the system, A, B, € and D are the
system matrices with appropriate dimension.

Let'E;C € B™ 1 < k < m denote the kth column of
the m x m identity metrix and § be the 2-D discrete
time unit impulse signal satisfying

sl [ L ifi=0,i=0
82, 1) _{ 0, otherwise

Further let the impulse response of the 2-D system G,
subject to the zero boundary condition z*(-1,7) =
07:3”(2.7 _l) =0, ‘,L.h.(o, 0) =0, -TU(O, O) = 0,7, = 0 and
the input u = Exd, 1 < k < m, be

gk = GEkJ.
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If the 2-D systel;n (7 is stable, its impulse response
gr € £y, for 1 < k < m. We can follow the standard
definition of the Hs norm for one-dimensional (1-D)
systems to define the H; norm of the 2-D system G as

161 = | D _ligsll = | D D_ D ok (@ 7)o, 5).

k=1 k=1 i=0 j=0
(3)

Physically, the H; norm of the system represents the
amount of the system output energy when it is subject
to the unit impulse input or a Gaussian white noise
input with unit variance,

Consider that the 2-D system G in the Roesser model
(2) is subject to the input u = Etd, 1 < &k < m.
Under such an input, let (i, ) and z¥(%, j) denote the
system horizontal state and vertical state, respectively.
Further, let

k- o hy: .
. :rk(z,g')] e [mk(z+l,g)}

(i, ) = BV (i, f) = N & ,

k(2 9) [ xk('laj) (4 7) Ik(%,J-l-l)
and write the matrices B € R(""*‘":')"m and D €
R*™ as B = [By By Bp) and D =
(D1 Do D). Under the zero boundary con-
dition, we can express the system impulse response gy,
1<k<m,as
= Ary (i, ) + BEx8(i, §)
1 Axg(i,§), otherwise.

zp{4,7)

[ Dx ifi=0, j=0
| Czx(i,7) otherwise.

We now present, a sufficient condition for evaluation of
the Hs nporm of the 2-D system in the Roessor model

(2).

Theorem 1 Given a positive scalar -y, the Hg norm of
the 2-D system G in the form (2) with zero boundary
condition is bounded by v, ie. |Gl2a < v, if there
exists a block-diagonal matriz P = diag{Py, Py} > 0
such that
ATPA+cTCc-P <, (5)
and
trace(BT PB4+ DTD) — 4% < 0. (6)

Progf. Using the matrix P = dieg{Py,P,} > 0, we
introduce, for 1 < k < m,

AVi (i, §) = 2 (6, 5)" Pk (i, 5) — 2 i, 5)T Pon(d, 7).
(7}
The existence of a diagonal positive definite solution P
for (5) implies that the 2-D system (2) is stable {2] and
that xy &€ £2. This together with (7} further implies

3OS awGs =0 {8

i=0 ;=0



On the other hand, we can use (4} to obtain

SN A= SN wli, )(ATPA - Plar(i, )
=0 5=0 i=g Jj=0_
+BIPB,

(9)
Using (8}, (9) and (4), we can express the Hz norm of
the 2-D system G as

HGlis

i
hgE
[V]#
‘f’j
=

+ trace(BTPB + DY D). (10)

It follows immediately that [|G|l2 < v if (5) and (6)
are satisfied. O

We now introduce the deﬁ'njtion’ of the Hy norm of
the 2-D system G, denoted by |G|, as :

iGlico = sup ||Gule,
[fullz<1

under the system zero boundary condition. A bounded
real lemma for evaluation of the H,, norm of the 2-D
system in the Roesser model (2) is presented in [2],
which is stated as follows. .

Lemma 1 Given a positive scalar v, the 2-D system
(2) with zero boundary condition has an Hy noise at-
tenuation 7 if there exists a block-diagonal matriz P =
{Pn,P,} > 0, where P, € R™*" and P, & R
such that

-P PA PB 0

ATp —p 0 CT <0
BTp o -~ DT ’
0 c D T

3 Mixed H;/H,, control problems for
- 2-D systems in Roesser model

Consider a 2-D plant in the following Roesser model

(i +1,7) zh(i, 5) - .

[ (i, § + 1) ] :A[ (i, ) ].JFB””‘(”)
+B2'ZU2(’1:,j) + BBU("':sj)

Z(i,j) = [ 228::;; ] -I-Duwl(i,j)
+D12w2(i,j) ﬂ‘Dlsu(i,j)
on o] 50

+Doywi(i, §) + Dagwa(t, j)

(11)

where P € R™, g% € R™,u € R™ and y € R ate, re-
spectively, the horizontal state, vertical state, control
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input and measurement output of the plant, w; € R™
is a disturbance signal of bounded spectrum, w, € R™2
is a signal of bounded power, z € REP is the controlled
output, A, By, By, Bz, C1, Ca, D1, Dha, D13, Day
and Dy are real constant matrices of the plant of ap-
propriate dimension.

Introduce the 2-D output feedback controller for the
plant in the following Roesser model.

gh(i+1,9) | _ z2 (i, 5) y
[zﬂﬁj+1) =4Ac| gy | TBevED 1)
hp- -
w(ii) =Co| T |+ Doylig)

where z? € R™ . z¥ € R™ are, respectively, the
horizontal state and vertical state of the controller,
Ap € R(nh+nv)x(ﬂh+nv),Bc € R('nh‘f‘ﬂv)XI’CC c
REmx{matn) and Do € R™* are real constant ma-
trices of the controller. Note that we consider a full
order controller.

wl(iaj) ™
N

w2(iaj)

-

u(3, 7) c = y(i, )

Figure 1: The closed-loop control system

Let T : { 1
W3

the plant (11) and controller (12). The structure of the
closed loop system is shown in Figure 1 and it can be
written in the following Roesser model.

] — z denote the closed loop system of

g+ 1,7) A = - .
[ 41 | T 2 | T B @)+ Bawalid)
2Gi) =€ BT LD, 5) + Dawati, )
T iU(Z,J) ]
(13)
h . .

Chis s (i, 4) I S
where (i, §) [m’;(i,j)] and Z¥(i,5) =
(4, 5) i 1 d vertical stat
22 (i, 3) are the horizontal state and vertical state

of the closed loop system, respectively, and
B3yCc ] e

- A+ B:DeCs
Ac

A=1I BoCa

B

I B1 + BaDCDM
BcDgl BCD22

1:31 = Dy + D13DcDas,

B Dy = Dz + Di13DeDaz,
C = [ Ch 4+ D13DcCe DisCo ]HT,

Il =

== v R e B
S~ o O
o= BN ]

:|’ BQ:H[ By + BaDe Do ]’

- o o



Let 7} : w) +— z denote the closed loop system subject
to the spectrum bounded disturbance input w; with
wy = 0 and T3 : we ++ z denote the closed loop system
subject to the energy bounded disturbance input ws
with w; = 0. Then we state the 2-D mixed Hs/H,,
control problem as: for given constants 1, vz > 0, find,
if exists, a 2-D output feedback controller of the form
(12) for the 2-D plant (11) such that the closed-loop
system is stable and has mixed specified H; perfor-
mance {|T1]|, < v and Hy performance ||Tal, < ¥2.

Now consider that the 2-D plant in the Roesser model
(11) is subject to polytopic parameter uncertainties
such that its system matrices are unknown but are
known to belong to the following n-polytopic convex
polyhedron.

M = {{A, By, By, B3, Cy,Ca, D11, D2, Dha, Da1, D22)
e (A“'), BY B® B® c® ¢ D),
i1

n
D, 08,0, 0§), 6 =1.6 >0},
i=1
Lo NP ¢
where A®, B, BY?, BO, ¢V, ¢, b}, DY), D, DY,
D;"z),l < ¢ < m, are known matrices of appropriate
dimension and &;, 1 < ¢ < n, are free nonnegative

n
parameters constrained by Z & =1
i=1
When the parameters of the uncertain 2-) plant in
the Roesser maodel {11) belong to the polyhedron (14),
we can state the 2-D robust Hy/H,, control problem
as: for given constants 3,72 > 0, find, if exists, a
2-D output feedback controller of the form (12} for
the 2-D uncertain plant (11) such that the closed-loop
system has mixed specified H, performance |[T1]], < n
and Hy, performance ||T3||, < v for any parameter
uncertainty from the polyhedron (14).

Remark 1 The mized Ha/Hy control of 1-D systems
without parameter uncertainty has been studied in, for
example, [3]. In the presence of polytopic type of pa-
rameter uncertainty, the robust Hy or Hy, filtering has
been investigated in (4, 11]. However, the problem of
dynamic output feedback control of systems with param-
eter uncertainties of polytopic type remains open even
for 1-D systems. In this paper, we present an approach
to address this problem for 2-D systems with polytopic
uncertainty which is also applicable to 1-D systems.

4 Mixed Hs/H,, control of 2-D systems
in Roesser model

Using the result of Theorem 1 and the bounded real
lemma of [2], we present a solution for the mixed
H3/H 2-D control problem in the following theorem.
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Theorem 2 The 2-D mired Ha/Hy control problem
for the plant (11) is solvable if there exist matrices
S>0,0, A, T, Do and block-diagonal matrices X =
diag { X", X"}, Y = diag {Y*,Y*}, N = diag {N*,N"},
Hu = diag {HYy, H1 } > 0, Hye = diag {H}. H3:} > 0,
Hyy = diag {H{y, Hiz}, K = diag{K}, K1} > 0,
f;zz = diag { K3, K3} > 0, K12 = diag { K{3, K, } such
that

Hy * *
H]Tz Hag *
XA+TC: o X+XT-Hy, ,
A+ B3DoCs  A¥T 4+ BaA T4+ NT - HE
Ci+ DisDoC C1YT + DisA 0
* *
* *
* * | >0
Y + YT - H22 *
0 I
(15)
S *
XBy + Dy X+XT_Hy
By + BsDeD2xy I+ NT - HE
D11+ D13DeDxn 0 (16)
* *
* *
Y +YT ~Hy « |70
0 I
"Kll +* *
—'K;rg —K22 *
XA+TC, 6 X -XT+Ku
A+ BaDcCy,  AYT + BsA  —T - NT 4+ KL
0 0 (XBy +TD)T
C1 4+ PuaDeCr C1YT L DisA 0
* * *
* * *
* * *
-Y - YT + Ky * x | <9
(Bz + BaDc D)7 31 *
0 Do+ DiaDeDyy -1
(17
trace(S) < i, (18)

where * represents any arbitrary real block entries of

‘the matrices with appropriate dimension.

Proof. Following from Theorem 1 and the bounded
real lemma of [2] and using the slack variable tech-
nique [3], the mixed HofH,, performance can be met
if there exist a matrix § > 0, block-diagonal matri-

ces P = diag { Py, P}, P = diag{Ps, P,} > 0 and

P = diag {P4, P,} > 0, all with appropriate dimen-
sion, such that

_P AT}’:"T C'T
PA P+PT-P 0 |>0 (19)
c 0 I



5 BTpT DT
BBy P+PT_P 0 |>0 (20)

D, 0 I
trace(S) < 73, (21)
-P ATPT o. CT
PA -P-PT+P PB, .0
5 seT . gr b | < 0. (22)
C 0 N Dy -1

Obviously, Il = II-! = IIT. Pre- and post-multiplying
(19) by diag{II, 11, I}, (20) by diag{I,TI, I} and (22) by
diag{II,II, I, I}, respectively, the matrix inequalities
(19), (20) and (22) are equivalent to

Q naTngr nér
QAN Q+QT-Q 0

>0,  (23)
én 0 I

I
QUB, Q+Q"-@ o | >0,  (24)
Dy .0 I
~Q nATog” 0 It
QAT -Q-Q"+Q QB 0
“ QgggQT ¢ CEfy%IZ pr | <0 @
cn 0 D, I

where @ = IIPII, Q = I1PII and Q = IIPII.
Observe that @+ QT > @ > 0. Hence, Q is invertible.

= | X U =, | Y V -
_Deno_teQ—_[U1 *],Q _[Vl *}andZ—
[{, 3],sowehave -

s | X Ul o X N

ZQZ—[I o]z‘[f Y7 |

where N = XY7T 4+ UVT. Note that the matrices X
U7, Y and V are all diagonal matrices. Pre-multiply
-(23), (24} and (25) by diag{Z, Z,I}, diag{I,Z, I} and
diag{Z, Z, 1, I}, respectively. Then post-multiply (23),
(24) and (25) by diag{Z7, Z7, I}, diag{I, Z7,I} and
diag{Z*,Z"7,I,I}, respectively. We can obtain the

result of the theorem by letting H = [ HL, Hy
Ky Ki2

ZQZT >0, K = [ KL, K22] =2ZQ27 >0, 0 =

XAYT 4+ XB3DeCoYT + UBoCo YT + XB3CeVT +
UAcVT, T = XB3Dg + UBe and A = DeCoYT +
Cc'VT. O

If the LMIs {18} exist a solution, it is easy to see that

I+ N

X+ XxT
[ y+y? | >%

I+ NT

Multiply the above from the left by {~Y I] and from
the right by [-Y Ij?¥. We obtain that

YXYT - MY+ (Y XT - NTYWT > 0.
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Hyy Hyp ] _

It is then clear that N — XY7 is invertible. Since
N-XYT =pUVT, U and V are also invertible. Thus,
a solution to the controller in the form (12) can be ob-
tained from the solutions to the LMIs (15}-(18), where
Ce = (A = DeCoYTYW-T, Bg = U~YT — X BsD¢),
Ag = U0 — X(A + B3DcC)YT — XB3CoVT —
UBC’CQYT]V-T and the diagonal matrices U/, V can
be chosen arbitrarily such that XY7 + UVT = N is
satisfied.

5 Robust H,/H, control of Roesser
model

To find a solution for the robust Hy/Hy 2-D control
problem when the plant is subject to the polytopic
parameter uncertainties as modelled in (14), we first
introduce the following useful technical result.

.Lemma 2 Let A € R**" >0, ¥ ¢ R™*™ > (, Wy €

R™*" gnd W, € R™ ™ are nonsingular, £ € R™*",

-y e X )y € R™*", There exists matric H > 0

such that
Wy HW{ =T of
E A-W,HWT o | >0  (26)
Q 2, o

if there erist scalar £ > 0 and matrices H > 0, H > 0 -
such that

m

=T QT
= . 1
= A-H Qf | >0, (27)
oG N 1]

[' 2¢I —eH Wi Twy

Wyw1 i } > 0. (28)

Proof. Let H = W,HWY, so we know that (27) can

lead to (26) if

H< W HWT =w,Wtaw; TwT, (29
It is easy to know that (29} holds if and onlg; if
witAwW Y <w, 1AW, T
or
A > wiTwlatw,w .
Since (Y —eTH(H! — €I) > 0, we have
H™'>21I-¢%H. |
Therefore, we know (29) holds if 2ef — ¢%H

>
wTwy H-1W,W; ', which is equivalent to (28).
This completes the proof. i

Using the above lemma, the result of Theorem 1 and
the bounded real lemma of [2], we present a solution
for the robust Ha/Hy 2-D control problem in the fol-
lowing theorem.



Theorem 3 The robust Ho/Hy, 2-D control problem
for the plant (11) with the parameter uncertainty (14)
is solvable if, for some scalars sg”” >0, eg”) > 0 and
alll €1 < n, 1 <j<n, there exist matrices S > 0,

8, A, T, Do and block-dingonal matrices

X = diag {X*, X}, B = diag { HE, BG"} > 0,

Y = diag {Y*,Y"},Hy" = diag {Hg'f)", Hg‘;j)"} >0,

N = diag {N* N*}, (7 = diag { £G"", 857"} >0,

AGD = diag { HE* gl

6D = diog L AG AG Y
RGD = diag { RED RGOV
K(w) diag K(tJ}h K(w)v ,
HED = ding { BE AEDL 50
RED — diag { REP G 5 0
K5o? = diag { KEPM RS L >0
K8 = digg { REI* REI L 5 0
K5 = diag { RSV K57 | >0

all with appropriate dimension, such that

H(- )]
H(‘ T

Al +u‘—')ucc.( Yy refd

ali) 4 B(J)DCC(‘)
(i} ) L)
G+ P Dcfz

;4.9

22
{ [F2] (i) (<) (i)
AW 4 s ool yroft 4 ala + e

A 4 g “(DCC(") +A)
(%) ) i)
01: + 0 Wwee +4)

*

Ll . * *
x4+ xT _ ﬁ(llsj) o -
T T (52 T (£,7)
XT ¢ AT _ nu vy +vT nzz *
o o r
(30)
R(‘ i) "
R(‘» J‘)'T' K(‘ i)

A9+ 8D poe® 3 re® + sPa v e
A1) + B (ol + a)

Al 4 BmDCCm s o
_4(‘)+BU’D c(‘)
0
eV + pW peef® c® 4 o poel L
. *
_xT _ NT+ R’(‘ T
(5 4 8P b pf) Y ol
_\? xT 4 k“" i}
o :

* * *
L3 * *
* . * *
_Y_YT+KL(’1J) . e < 0
85+ 8{ g pihT N o
* 4
o o+ ol penyy 1
(31)
B +B(;)D o) 4 e %o RT - Al
B? % B o D AT 4 AT i;:)fr
! ulﬂyu D21 0 (32)
* - "
* . -
varToglhdd o1 >0
o 1
trace(S) < ~2 (33)
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20 [ _ (D)2 ) (2 i)
_(Egi!j})fggésj)T 25(11"3.)1 _ (Egi.j))zgé;.j)
X 0
0 Y
XT 0
0 YT
gD gEd >0
4577 A
(34)
and
Zegi’j)f _ (S:(;J))EREJ) —(Egi’j))2f?§;’j)
—(sg"’j))_zf?{;'j)"" zsg"”I — ()2 R
X 0
0 Y
XT 0
0 ¥T
i kg | 0
RGP R
(35)

Proof. Following from Theorem 1 and the hounded
real lemma of [2] and using the slack variable tech-
nique, the robust mixed Hy/H,, performance can be
met if there exist a matrix S > 0, block-diagonal

matrices P41 = diag {P(i’j} P(i’j)} > 0, P =
diag {P(i'j (&g } > 0 and P = diag {Ph, } for

alll1 <i<n, l < 7 < n and with appropriate dimen-
sion, such that

Pl AGHT T GENT
pPAGS  py pT_pld) g >0, (36)
oD 0 I
[ s BEITHT  pET ]
PR Py PT_pEd g >0, (37)
DY 0 I
trace(5) < +5, (38)
_ pli) AT BT 0 owoT
PAGS)  _p _ pT . pta)  pRED 0
0 BEaTET  _pgp pgar | <0
Gia) 0 pg» g
(39)
where
AGD 11 AW +Bi§JC)£CC§) Ba(;:Cc nr,
6o _ gy | B+ B DD
! I Bo DY ’
B _qp | B{ + B’ Do DY}
2 Bo DY ’

C:){i.s.?") . [ C(‘) +D(J)D C(*) ng:'s)cc ;1
B¢ = D + DY DD, 54 = DY + DW DD,
Pre- and post-multiplying (36) by diag{II,TI, I'}, {37}

by diag{I,I1,I} and {39) by diag{IL,II,I, I'}, respec-
tively, the matrix inequalities (36}, (37) and (39) are



equivalent to

Q(LJ‘) Hﬁ(i’j)THQT ncHT
QAP Q+QT-Q%) 0 >0, (40)
et 0 I
5 Bg“'nj)THQT D{i’j)T
QUBM Q+4"-Q%) o | >0, (41)
DY 0 I
Q) MAGHTIAT 0 noGEHNT
énj(i.j)n _Q _ @T + Q(i,j) QHBZ(,‘*.J) 0
0 Béi:j)THéT _'YQZI Dg’j)T
el |\ | 0 ng') T
(42)

where Q) = TIPGITL, QU9 = [IPITI and Q) = TIPIL

It can be easily seen that Q is non-singular. De-

~ | X U =1 | YV _
noteQ—[U1 *J,Q _|:V1 *]andZm
I 0

Y vV

all diagonal matrices. Further let, forall 1 < i < n
and 1 <j<mn,

. Note that the matrices X U, Y and V are

L J2(CE L = (Ch)] o
D = [ AL 12 - ZQ('&.J)ZT’
i
o Kl g -
K@D = [ K(i’l")T K%z?,j) = ZQWitgT,
12 22

) = XADYT 4+ XBP DcCPYT + UBeCY
YT + XBPCoVT + UAcVT,
I“(i.j) = XB:(;J)DC’ + UBG,
AD = DeCPYT + CeVT, N = XYT + UVT.

We can pre-multiply (40) by diag{Z, Z, I}, (41) by
diag{I,Z,1} and (42} diag{Z, Z,I,I}, respectively,
and post-multiply (40) by diag{ZT,ZT I}, (41) by
diag{I, ZV I} and (42) diag{Z7T,Z7T,I,I}, respec-
tively, to obtain

2l6d)

o « .
iy uiyd *
x A6 4 p() o) alid) x4+ xT_ Hg“j)
a6 4 ng)Dcc B AT L gUAG) ;o NT _ ”i;J)T
(3) (7} £} (i) T J) a4
e+ D pac; oYyt ol A9 0
* *
. .
P R
T 1.
v+ vT - aly .
0 i
(43)
g * * *
xal® rtedpld  x g xT o glhd o =
B;‘) +80 00D LeNT L HPT T T g 20
i) i) p. i i
o+ i DDl o 0 I
(44)
71({"1'73'}‘ e *
_K§‘2-J)7 —Ké'z'” .
x Al g plid) glid ali.d) _x _xT +K(i].i)

PIC I Béj)pcczi) Al yT ng)A(i) _r- NT 4 gEAT

0 0 (x 5§ 4 rG.drplhT

(§) [€)] (i) (YT (34 (s
oV + DR Doy cyT 4 pd Ald) o
* * *
» » *
N N «
Yy —-vT + K(""’) PN . < 0.
) . 29,
(887 4+ 58 b pinT —«,2}1 o
8] ¢] (4)
v Dy + Dy De Doy L

(45)
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Observe from that (43) that X and Y are in-
vertible. Pre- and post-multiplying {43) by
diog{I,Y~', X ', I,I} and dieg{I,Y~",X"7T,1,I}, re-
spectively, denoting

S g@ gl o
I = |: £ 1:'1' r _1;; ) — WIH(LJ)W;T
Hz(z’ﬂ Héz'ﬂ
s U gun .
g — [ ety 12 = Wo HEDWT
w7 i, 2 2
ngj HézJ)
I 0 Xt oof o
W1=[0Y_1},W2=[0 I],N=YT+

XWvT, X = X4, T'= XUBc, A = CoVTY~7 and
© = XUAcVTY T and applying Lemma 2, yields, there
exists H¥) > 0 such that the above matrix inequality or
equivalently (43} holds if there exist a scalar sgi'j )'> 0, ma-
trices H“9 > 0 and A% > 0 such that (30) and (34)
hold.

Similarly, pre- and  post-multiplying (44) by
diag{I, X"',I,I} and dieg{I, X 7,I,I} and (45)
by

diag{I,Y™', X 1, 1,1, I}, and diag{I,Y~7, X7 I, 1,1},
respectively, denoting

Fd) [ R

Kn? R
KE;.J)T

_2o | =wmKESPwT
K3 ]

RGP R
RE;.J‘)T I{'é;’”
Similarly, by applying Lemma 2 again, the theorem is es-
tablished. 0

Frlad [ ] = Wa KGO WE

If the robust Ha/Hy 2-D control problem for the plant
(11) with the polytopic parameter uncertainty as mod-
elled in (14) is solvable, a controller in the Roesser model
(12) can be obtained from the solutions to the LMIs (30)-
(34), where Coe = AYTV™T, By = UT'X7IT, Ag =
U tX-'eYTv-T and the diagonal matrices {7, V can be
chosen arbitrarily as long as Y7 + X~'UV7T = N is satis-
fied. Note that I/ and V are non-singular.

Remark 2 As mentioned earlier, the dynamic output feed-
back control of systems with polytopic uncertainty has not
been solved by existing literature even for 1-D systems. The-
orem & presents a solution to this open problem. Note that
the solution involves searching for appropriate scaling pa-
rameters EEi’j) and sgi'j) whick is in general difficult al-
though some optimization algorithms such as the fmin-
search in Matlab Optimization Toolbor may be applied
to obtain a local optimal solution. In practice, to sim-
plify the search, one may set egi‘j) = &1 and Egi’j} = &9,
1,7 =1,2,---,n but at a cost of suboptimal performance.

6 Example

6.1 Mixed H,/H, control of heat exchanger
Consider the following equation describing heat exchanger
51

aT(x,t) _  IT(z,t)

Oz 8t

— T(z,t) + U(L) (46)



where T'(z, t) is usually the temperature at space z € [0,z 4]
and time ¢ & [0,00|. U{{) is a given force function. Taking

TG, 5) = T(iAz, jAr), U(j) =U(Al),

and z(4,5) = T(i — 1,5), 2°(i,j) = T{4,3), from (46), we
can obtain the following Roesser model :

i+, ] [ o 1 riy ] 107,
[ m”(z}ﬂi) } - [ az  a ] [ :"(i,j) ] +[ b ]U(J)
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where a, = —%—At,agzﬁ—;andbzéj.

Let At = 0.1 and Az = 0.2, we have a; = 0.4, az = 0.5
and b = 0.1. If we take noise disturbance into account and
assume that the whole system is modelled in the form of

(11) with
0 1 0 [ o1
A“‘[o.s 0.4]’81_[1J’B2_[0.08}’

0
By = [ 01 ],C*l:[ 04 03 ],C2=[1 10],
and Dy = 0.01, D012 = 001,013 = 0.1,D21 = 0,032 =
0.05, Dy = 0. '

Given v; = 0.059 and +5 = 0.05, by Theorem 1, we obtain

A —0.0068 ] Bo = [ —0.0259 ] ’

0.0271

_ | —0.1002
¢~ —.0.0006 —0.0008

Co=[ 143184 -0.7154 |, Dec = —0.3056.

We can thus have the state-space model of the close-loop
system in the form of (13) and the corresponding transfer
functions as follows:

Towy = C(Z — A)~' By + D3, (48)

where Z = diag{znlz, z.12}. In addition, Figure 2 and.
Figure 3 show the magnitude of frequency responses of the
closed-loop systems Thu, (67", &%) and Ty, (€744, e7¥),
respectively, over all frequencies, where 1.0 corresponds to
w. From Figure 3, it can be known that the maximum value
of Thuw, (87", 7} is 0.0411 which is below the specified
upper bound vz = 0.05.
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Figure 2: The frequency response of Tayp, (€74, e7%7)
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Figure 3: The frequency response of Ty, (67", /)

6.2 Robust H:/H,, control of heat exchanger

We further consider the case that the heat exchanger sys-
tem (46) is subject to polytopic parameter uncertainties
~such that the system matrices of its Roesser model belong

to the 2-polytopic convex polyhedron in the form of (14),
where

BY = [ 0[.11 ] B = [

c?=f01 05],¢f=[1 1],6P=[2 05],
DY =0,D® =0.1,D) =-03, 0¥ =01,p = 0.1,
DY =02,0{) =01,D =012, DY = 0.1, D) = 0.15.

Let V1 = 10, &' = 1074, = 1074, 2? = 1071,
e =5, &l =107, &MV = 107%ePP = 1074, 4 =
0.1 and 2 = 0.38. Following from Theorem 3, we have

]’Y= [ 18.0847 0 }

- 13.4222 0
X= [ 0 9.5279

0 6.9470

b= 0 —0.5433 —0.1010

T —3.7812 0
0.1217

] 6= [ 0.2763  -0.3362 ] ’

o | —0.2592
=~ | -0.0173

},A: [ 0.3895 —1.2003 ].

1 0
Then, choose U = [ 0 1 ], 50

_rr-lg-l/g Ty _ | —1.6201 0
V=U X""(N Y)_[ 0 “1.4497:|.

Therefore, we obtain the robust Ha/Hy, controller of the
form {12) with

—0.2285

Ao =1 01614

0.1646 | . _ [ —0.0193
—-0.1152 [P T | ~p.0025 |’

Co=[ —43236 84803 |,Dc = —3.2342.



Let the actual 2-D system be obtained from the above two-
vertex polytope with £ = 0.7 and £z = 0.3. The frequency
responses of Ty, and Ty, defined as (48) are shown in
Figure 4 and Figure 5, respectively. We can find that the
specified H2 and H, performances are met.

Figure 4: The frequency response of Tyu, (67", /)

o, = =0 -

Figure 5: The frequency response of Ty, (¥, e*")

7 Conclusion

In this paper, we extended the classical defimition of the Hs
performance to 2-D systems and presented a sufficient con-
dition for evaluation of the Hz performance of 2-D) system
in Roesser model. Using this condition and the existing
bounded real lemma for 2-D systems, we develop system-
atic design methods for mixed Ha/Hoo and robust Hy/Heo
control of 2-D systems in Roesser model. The solutions for
the H»/H. control are in the form of LMIs which can be
efficiently computed by existing software.
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