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Abstract: The Hz performance specification for one- 
dimensional systems has been known to be analytically 
and practically meaningful and widely used in the and- 
ysis and design of control and filtering systems. How- 
ever, it is still of little use in the analysis and design 
of two-dimensional systems due to the structural and 
dynamical complexity of two-dimensional systems. In 
this paper, we extend the classicaI definition of the H2 
performance to two-dimensional systems and present 
a sufficient condition for evaluation of the H2 perfor- 
mance of twedimensional systems in Roesser model. 
Using this condition and the existing bounded real 
lemma €or two-dimensional systems, we develop sys- 
tematic design methods for mixed H2/Hm and robust 
H z / H ,  control of two-dimensional systems with poly- 
topic uncertainty. It is worth pointing out that our 
robust control approach can also be applied to give a 
solution to  the dynamic output feedback control of one- 
dimensional systems with polytopic uncertainty which 
has not been solved in existing literature. 

Keywords: Hz control, H, control, Optimal control, 
Twedimensional systems. 

1 Introduction 

Many processes in practical applications are two- 
dimensional system which exist in sound, seismic and 
underwater signal propagation, visual recognition of 
robotic systems, thermal processesl etc. Early work 
on control of 2-D systems can be found in [5, 6, 141. 
Recently, there are a number of results reported on 
control and filtering of 2-D systems. Among these, 
[ 1,  21 developed a systematic approach to the solutions 
of H ,  and robust control and filtering of 2-D systems 
in different system models. The results in [l, 21 are 
based on a bounded real lemma for 2-D systems and 
the solutions are computed using a linear matrix in- 
equality (LMI) technique. In [I31 a solution for mixed 
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H2/Hm filtering of 2-D systems is presented using the 
LMI technique, where a generalized Hz norm is deiined 
as the square of the peak amplitude of the output when 
the total energy of the past inputs is no greater than 
unity. Parallel to 1-D optimal control, the 2-D lin- 
ear quadratic regulator (LQR) problem is developed 
in [7], where the design is based on the soIution of sev- 
eral canonical equations of a Hamilitionian function. 
In [ la] ,  the quadratic optimal control of a discretized 
2-D plant is reformuhted into a I-D optimal control 
problem which is restricted to finite 2-D indices. 

H2 optimal control for continuous and discrete time 
one-dimensional (1-D) systems is a classical problem 
in linear system theory, The objective of the Hz con- 
trol is to minimize the error energy of the system when 
the system is subject to unit impulse input or, equiva- 
lently, a white noise input of unit variance. Because of 
this analytically and practically meaningful specifica- 
tion, the H2 problem and solution has been well stud- 
ied and applied for several decades. However, the 1-D 
optimal control problem and its solution has not been 
systematically extended to the optimal control of 2-D 
systems, because of the structural and dynamical com- 
plexity of 2-D systems which significantly differ from 
l-D systems. So far the existing result of optimal con- 
trol of 2-D systems either used a different definition of 
the problem, such as the generalized Hz norm in [U], 
or restricted the range of the 2-D system solution, such 
as the 1-D equivalent optimal control solution in [12]. 

In this paper, we consider linear discrete 2-D systems in 
Roesser model [lo]. We will extend the definition of the 
Hz performance specification for 1-D systems to 2-D 
systems and derive a sufficient condition for evaluation 
of the 2-D system H2 performance. This condition is 
not necessary due to the difficulty that so far there has 
not been a necessary and sufficient condition similar 
to that given by the 1-D Lyapunov equation for the 
stability of 2-D systems in the state space [8, 91. 

Using the condition for the 2-D system Hz performance 
and the existing bounded real lemma [l, 23 for the 2-D 
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system H, performance, we develop a systematic p r e  
cedure for the design of the mixed Hz/H,  controlIer 
for 2-D systems in terms of LMIs. We further extend 
the design to robust H z / H ,  control which can cope 
with a general class of systems with polytopic parame- 
ter uncertainties. It should be noted that the problem 
of output feedback control of systems with polytopic 
uncertainty has not been solved even for 1-D systems 
due to the difficulty of obtaining a fixed controller from 
the solution of the associated LMIs. In this paper, we 
present a methodology to overcome this difficulty. Our 
solutions to the mixed HZ/H, and robust Hz/H,  
controllers can be efficiently computed from a set of 
LMIs or parameterized LMIs. The practicaI applica- 
tion in heat exchanger process shows the feasibility of 
the mixed W Z / R ,  control and robust Efa/H,  control 
methods developed in this paper. 

2 H2 norm of 2-D systems in Roesser 
model 

. Let 2' be the set of nonnegative integers. A 2-D signal 
s with s ( i , j )  E R", i , j  E 2' is said to belong to the 
2-D &-space if 

where 11 . 112 denotes the L'z norm of s. 

Roesser model for a 2-D system G : U H y is defined 
by the following state equation 

where xh E Rnh,xv E Rnw,u E Rm and y E R' are, 
respectively, the horizontd state, vertical state, input 
and the output of the system, A,  3, C and D are the 
system matrices with appropriate dimension. 

Let Ek E Rm, 1 5 k 5 m denote the kth column of 
the m x m identity matrix and 6 be the 2-D discrete 
time unit impulse signal satisfying 

1, i f  2 = 0 , j  = 0; 
0 ,  otherwise S ( , i , j )  = 

Rrrther let the impulse response of the 2-D system G, 
subject to the zero boundary condition zh(-l,j) = 
O,z"(i, -1) = 0, z"(0,O) = O,z"(O, 0) = O , z , j  2 0 and 
the input U = Ek6 ,  1 5 k 5 m, be 

If the 2-D syste& G is stable, its impulse response 
gk f 8 2 ,  for 1 5 k 5 m. We can follow the standard 
definition of the Hz norm for one-dimensional (1-D) 
systems to define the Hz norm of the 2-D system G as 
r 

k=l  

(3) 
Physically, the HZ norm of the system represents the 
amount of the system output energy when it is subject 
to the unit impulse input or a Gaussian white noise 
input with unit variance. 

Consider that the 2-D system G in the Roesser model 
(2) is subject to the input U = Ekd, 1 5 k 5 m. 
Under such an input, let $ ( i 7 j )  and $(i,.j) denote the 
system horizontal &ate and vertical state, respectively. 
Further, let 

and write the matrices B E R(nh+n*)xm q d  D E 
RLrm as B = & and D = 
[& . . -  f i m ] .  Under the zero boundary con- 
dition, we can express the system impulse response gk, 
l < k < m , a s  

~ i ( i , j )  = A ~ k ( i , j )  + BEkG(i , j )  

~ { B k t  if i = O ,  j = O ;  
otherwise. Azk (i , j )  , 

(4) 
S k ( i , j >  = C Z k ( i , j )  4- D E k d ( i , j )  

if 2 = 0, j = 0;  { : i k ( i , j )  otherwise. 

We now present a sufficient condition for evaluation of 
the H2 norm of the 2-D system in the Roessor model 
(2).  

Theorem 1 Given a positive scalar y, the Hz norm of 
the 2-Ll system G an the form (2) with zero boundary 
condition i s  bounded by y, i.e. llGllz < y, if there 
exists a block-diagonal matrix P = diag{Ph, Pv} > 0 
such that 

and 
A ~ P A + C ~ C -  P < 0, (5) 

(6) trace(BTPB + D ~ D )  - y2 < O. 

Proof. Using the matrix P = diag{Ph, Pv) > 0, we 
introduce, for 1 5 k 5 m, 

AVj(i, j )  = ~ i ( i ,  j ) T P ~ i ( Z ,  j )  - ~ k ( i ,  j ) T P ~ k ( i , j ) .  

The existence of a diagonal positive definite solution P 
for ( 5 )  implies that the 2-D system (2) is stable 121 and 
that Xk E &. This together with (7) further implies 
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On the other hand, we can use (4) t o  obtain 

(9) 
Using (8) ,  (9) and (4), we can express the Hz norm of 

the 2-D system G as 

It follows immediately that l ]G l /~  < y if (5) and (6) 
are satisfied. n 

We now introduce the definition of the H ,  norm of 
the 2-D system G, denoted by llGljm, as 

IiGlico = SUP ilG42, 
II. 112 5 1 

under the system zero boundary condition. A bounded 
real lemma for evaluation of the H ,  norm of the 2-D 
system in the Roesser model (2) is presented in [2], 
which is stated as follows. 

Lemma 1 Given a positive scalar y, the 2-R system 
(2) with zero boundary condition has an H ,  noise at- 
tenuation y if there exists a block-diagonal matrix P = 
{Ph,P,,} > 0, where Ph E ElnhXrkh  and P, Rnuxn= 
such that . 

< 0. BTP 
D -I 

3 Mixed H2/Hm control problems for 
2-D systems in Roesser model 

Consider a 2-D plant in the following Roesser model 

input and measurement output of the plant, w1 E Rml 
is a disturbance signal of bounded spectrum, w2 E Rm2 
is a signal of bounded power, z E RP is the controlled 

and 0 2 2  are real constant matrices of the plant of ap- 
propriate dimension. 

Introduce the 2-D output feedback controller for the 
plant in the following Roesser model. 

output? A, B1, B21 B37 cl, c 2 7  Dlli DlZr D13r DZl 

where $ E Rnh,xX E Rnv are, respectively, the 
horizontal state and vertical state of the controller, 

R"X("h+"w) and DC E Rmxl are real constant ma- 
trices of the controller. Note that we consider a full 
order controller. 

Ac E R ( n h + n W ) x ( n h + n v ) ,  Bc E R(nh+%)xl ,  Cc E 

Figure 1: The closed-loop control system 

Let T : [ ii ] H t denote the closed loop system of 

the plant (11) and controller (12). The structure of the 
closed loop system is shown in Figure 1 and it can be  
written in the following Roesser model. 

[ =%[::!)) ] are the horizontal state and vertical state 

of the closed loop system, respectively, and 

(11) 
where xh E R"h, x" E Rnm, U E Rm and y E R1 are, re- 
sDectively. the horizontal state, vertical state, control 



Let TI : wI H z denote the dosed loop system subject 
to the spectrum bounded disturbance input tu1 with 
w2 : 0 and Tz : w2 +-+ z denote the closed loop system 
subject to the energy bounded disturbance input w2 

with w1 = 0. Then we state the 2-D mixed Hz/H,  
control problem as: for given constants y1,yz > 0, find, 
if exists, a 2-D output feedback controller of the form 
(12) for the 2-D plant (11) such that the closed-loop 
system is stable and has mixed specified Hz perfor- 
mance jlT1 < 71 and H ,  performance llT211, < 72. 
Now consider that the 2-D plant in the Roesser model 
(11) is subject to polytopic parameter uncertainties 
such that its system matrices are unknown but are 
known to belong to the following n-poiytopic convex 
polyhedron. 

M = {(A,Bi,~z,B~,Ci,Cz,~ii,~i2,~i3, Dzi,Dzz) 
11 

= cc ( /pB;i) ,pB(i)  3 ,  c(i) 1 ,  ($),Jq>, 
i L 1  

n I 

(14) 
where A(Z),B(*) B(l )  B(1) c(') D ( I ) , D ( ~ )  ~ ( ~ 1 .  D(I) 

1 I 2 1 3 1 1 7 2 1 I1 12, 139  2 1 )  

L$12), 1 5 i 5 n, are known matrices of appropriate 
dimension and &, 1 5 i 5 n, are free nonnegative 

parameters constrained by = 1. 

When the parameters of the uncertain 2-D plant in 
the Roesser model (12) belong to  the polyhedron (14), 
we can state the 2-D robust H z / H ,  control problem 
as: for given constants y1,y2 > 0, find, if exists, a 
2-D output feedback controller of the form (12) for 
the 2-D uncertain plant (11) such that the closed-loop 
system has mixed specified Hz performance /I2 < yI 
and H ,  performance llT211, < ~1 for any parameter 
uncertainty from the polyhedron (14). 

n 

1-1 

Remark 1 The mixed H2/H, control of 1-D systems 
without parameter uncertainty has been studied in, for 
example, [3'. In the presence of polgtopic type of  pa- 
rameter uncertainty, the robust f€, OT H ,  fi l tering has 
been investigated an [d ,  111. However, the problem of 
dynamic output feedback control of systems with param- 
eter uncertainties of polytopic type remains open even 
for 1-D sgstems. In this paper, we present an approach 
to address this problem for 2-0 systems with polgtopic 
uncertainty which is also applicable to  1-D systems. 

4 Mixed H 2 / H ,  control of 2-D systems 
in Roesser model 

Theorem 2 The 2-L? mixed H2/Hm control problem 
for the plant (11) is solvable i f  there exist matrices 
S > 0 ,  8, A, I?, DC and block-diagonal matrices X = 

H11 = diag {HFl,€i;l} > 0, HZz = diag(H,hz,H&) > 0, 

~ 1 2  = dias{Hlh2,HI"2}, ~ 1 1  = diag{Ki'l,K,",} > 0, 

diag { X h ,  X u  1, Y = diag { Yh, Y" }, N = diag { N h ,  N u  ), 

K22 = diag ( K t 2 ,  K & )  > 0, Kl2 = diag {&, K & }  such 
that 

Hi 1 * * 
HT, H 2 2  * 

CI + D13DCc2 C I Y T  + D13h 0 

X A  + rc2 8 X + X T - H 1 l ,  
A + B3DcC2 AYT + B3A I + N T  - HT, 

* * 
* 
* : j > o  

Y+YT-H2z * 
0 I 

(15) 

* * ) > O  
Y +YT - I122 * 

0 I l  

* * 1  

trace(S)  < $, ( 18) 

where + represents any arbitrary real block entries of 
the matrices with appropriate dimension. 

Proof. Folowing from Theorem 1 and the bounded 
real lemma of [2] and using the slack variable tech- 
nique [3], the mixed H2/H, performance can be met 
if there exist a matrix S > 0, block-diagonal matri- 
ces P = disg Ph, P,, , P = diug {Ph, Pv} > 0 and 

p = diag {PA, P, ] > 0, all with appropriate dimen- 
sion, such that 

{: - 1  
Using the result of Theorem 1 and the bounded real 
lemma of [2], we present a solution for the mixed 
H2/H, 2-D control problem in the following theorem. 

PA F + P - P  0 
0 I 
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Obviously, II = II-l = IIT. Pre- and post-multiplying 
(19) hy diag{II, II, I], (20) by diag{I, IT, I} and (22) by 
diag{II,  II, I ,  I } ,  respectively, the matrix inequalities 
(19), (20) and (22) are equident  to 

[ on&A-H G,+Q'-Q "41 > O ,  (23) 

GIIB, a+Q'-Q ? ]  > O ,  (24) 

n ATnQT 

CrI 0 I 

S BTl-IIQT 

0 I 

r -0 nATn6T 0 rICT 1 
QnAn -Q-QT"+Q QnB2 0 <() (as) I I 2n 0 Dz - I  

BFnQT -$I 

where Q = IIPII, Q = IIPIT and Q = IIpII. 

Observe that Q + 0' > Q > 0. Hence, Q is invertible. 

,Denote Q = [ 1 ,  a-' = [ vl * ] and 2 = 
x u  Y V  
U1 * 

[ 1 ,  so we have 

X N  

where IV = X Y T  + U V T .  Note that the matrices X 
U, Y and V are all diagonal matrices. Pre-multiply 

-(23), (24) and (25) bydiug{Z,Z,I}, d i a g ( I , Z , I }  and 
diag{Z, 2, I! I } ,  respectively. Then post-multiply (23), 
(24) and (25) by diag(ZT,  ZT, I } ,  diag{I, ZT, I }  and 
diag{ZT, Z T ,  I, I}, respectively. We can obtain the 

result of the theorem by letting H = [ 2i 2; ] = 

UAcVT, r = XB3Rc + UBc and h = DcC2YT + 

If the LMIs (18) exist a solution, it is easy to see that 

CCVT. 0 

[ ::;: ;:;T ] > 0. 

Multiply the above from the left by [-Y I ]  and from 
the right by [-Y IJT. We obtain that 

Y ( X Y T  - N )  + (YXT - N T ) Y T  > 0. 

It  is then clear that N - X Y T  is invertible. Since 
N - X Y T  = U V T ,  U and V are also invertible. Thus, 
a solution to the controller in the form (12) can be o b  
tained from the soIutions to the LMIs (15)-(la), where 
Cc = (A - DcC2YT)V-T, Bc = U - l ( r  - X B 3 D c ) ,  

UBcC2YT]V/-T and the diagonal matrices U,  V can 
be chosen arbitrarily such that X Y T  + UVT = N is 
satisfied. 

A c  = - X(A -I- B3DcC2)YT - XB3CcVT - 

5 Robust HZ/H, control of Roesser 
model 

To find a solution for the robust Hz/H,  2-D control 
problem when the plant is subject to the polytopic 
parameter uncertainties as modelled in (14), we first 
introduce the following useful technical result. 

.Lemma 2 Let A E Rnxn > 0, 9 E RmXm > 0, WZ E 
RnXn and Wl E RnX" are nonsingular, Z E Rnxn, 
C l ,  E RmX", f l z  E Rmxn.  There exists matrix H > 0 
such that 

XQ 1 ET 
Y 

A-WZHWT 0; > O  (26) 
Q 2  

i f  there esi: 
such that 

scalar E > 0 and matrices H > 0,  I? > 0 

Proof. Let fi = WZHWT, so we know that (27) can 
.lead to (26) if 

H < WlHW,T = WiWFIHWTTWF. (29) 

It is easy to know that (29) holds if and only if 

w;'Hw,-T < W,-1HWlT 

H - I  > w;TwTB--1 wz wc? 

H-1 2 2EI - 2 H .  

or 

Since (n-' - E I ) ~ H ( R - I  - E I )  3 0, we have 

Therefore, we know (29) holds if 2 ~ 1  - E ~ H  > 
WTTWTk4.lW~Wr1, which is equivalent to (28). 

Using the above lemma, the result of Theorem 1 and 
the bounded real lemma of [a], we present a solution 
for the robust Hz/Ho4 2-D control problem in the fol- 
lowing theorem. 

This completes the proof. 0 
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Theorem 3 The robust Hz /H ,  2-0 control problem 
for the plant (1 1) with the parameter uncertainty (14) 
is  solvable ij, for  some scalars E?") > 0, E:") > 0 and 
all 1 5 i 5 n, 1 <_ j 5 n, thew exist matrices S > 0,  
8, A, I?, Dc and black-diagonal matrices 

all with appropriate dimension, such that 

L 

and 

Proof. Following from Theorem 1 and the bounded 
real lemma of [Z] and using the slack variable tech- 
nique, the robust mixed Hz/H,  performance can be 
met if there exist a matrix S > 0, block-diagonal 

diag { pii'3), piig) > 0 and P = diag { p h ,  p,,}, for 
all I I: i 5 n, 1 5 j 5 n and with appropriate dimen- 
sion. such that 

matrices p(i>j) = d i q  P ~ > ~ ) , P $ ' J ' )  > 0, p(i,j) = 1 
1 

Pre- and post-multiplying (36) by diag{IT, II, I}, (37) 
by diag{ l ,  II, I} and (39) by diag{II ,  II, I ,  I}, respec- 

traca(S) < 7: (33) tiveIy, the matrix inequalities (36 ) ,  (37) and (39) are 
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equivalent to 

Observe from that (43) that X and Y are in- , 0, (40) vertible. Pre- and post-multiplying (43) by 
&ug{Z ,Y- ’ ,X - ’ , I , I }  and d i u g { l , Y - T , X - T , I , I } ,  re- 
spec tively, denoting 

nA(l,j)TnIQT nc(i)T 
QnA(Er3)n Q + QT - Q ( * x j )  0 

0 I 

L -  

[ ] .LNoie thai the matrices X U ,  I.1 and V are 

all diagonal matrices. Further let, for all 1 5 i 5 n 
and 1 5 j 5 71, 

Y T  + XBF)CcVT + U A c V T ,  
r(inj) = X B f ’ D c  + UBc,  

= DcC:)YT + CcVT, N = X Y T  + U V T .  

We can pre-multiply (40) by d i u g { Z , Z , I ) ,  (41) by 
diag(1, Z ,  I} and (42) diag{Z,  Z, I, I}, respectively, 
and post-multiply (40) by dzag{ZT, Z T ,  I}, (41) by 
diug{I,  ZT, I} and (42) diag{ZT, ZT, I, I } ,  respec- 
tiveIy, to obtain 

* I  

L L 

X - l l J V T ,  X = X-’, I’ = XU&, A = C C V ~ Y - ~  and 
8 = X U A c V T Y I T  and applying Lemma 2, yields, there 
exists H(’>j) > 0 such that the above matrix inequality or 
equivalently (43) holds if there exist a scalar E?”) > 0, ma- 
trices N(imi) > 0 and fi(’>j) > 0 such that (30) and (34) 
hold. 

Similarly, pre- and post-multiplying (44) by 
diag(I ,  X- ’ ,  I ,  I }  and diag(1, X - T ,  I ,  I} and (45) 
by 
diag{ l ,Y- ’ ,X: ’ ,  I , I ,  I}, and d i a g { l , Y - T , X - T i I I I ~ I } ,  
respectively, denoting 

Similarly, by applying Lemma 2 again, the theorem is es- 
t nblished. D 

If the robust H z / H ,  2-D control problerii for the plant 
(11) with the polytopic parameter uncertainty as mod- 
elled in (14) is solvable, a controller in the Roesser model 
(12) can be obtained from the solutions to the LMIs (30)- 
(34), where CC = h Y T V T ,  BC = U - l X - l T ,  AC = 
U-lX- l@YTV-T and the diagonal matrices U ,  V can be 
chosen arbitrarily as long as Y T  + X-’UVT = R is satis- 
fied. Note that U and V are non-singular. 

Remark 2 As mentioned earlier, the dgnamic output feed- 
buck control of systems with polytopic uncertainty has not 
been solved by existing literature even for I-D systems. The- 
orem 3 presents a solution to this open problem. Note that 
the solution involves searching f o r  appropriate scaling pa- 
rameters ~(li”) and &$”) which is in general dificult al- 
though some optimization algorithms such as the fmin- 
search in Matlab Optimization Toolbox may be applied 
to obtain a local optimal solution. In practice, to sim- 
p l i f y  the search, one may set E?”) = E I  and EF’J )  = 8 2 ,  

i, j = 1 , 2 , .  . . ,n but at a cost of suboptimal performance. 

6 Example 
* I  6.1 Mixed H z / H ,  control of heat exchanger 

Consider the following equation describing heat exchanger 

(46) 

PI 
-- dT(rc’ t’ - ~ I__- aT(zE, ‘) T(z, t )  + U ( t )  ax at 1038 



where T(z, t )  is usually the temperature at space z E [O, zf] 
and time t E [ O ,  001. U ( t )  is a given force function. Taking 

T(i ,  j )  = T(iAz, j At), V ( j )  = U ( j A t ) ,  

and d ' ( i , j )  = T( i  - l ,j),  d ' ( i , j )  = T( i , j ) ,  from (46), we 
can obtain the following Roesser model 

I ,  

where a1 = 1 - 2 - At, a2 = e and b = At. 

Let At = 0.1 and Ax = 0.2, we have a1 = 0.4, u2 = 0.5 
and b = 0.1. If we take noise disturbance into account and 
assume that the whole system is modelled in the form of 
(11) with 

and Dll = 0.01, Dlz = 0.01,D13 = 0.1, Dzl = 0, Dzz = 
0.05,023 = 0. 

Given y1 = 0.059 and 72 = 0.05, by Theorem 1, we obtain 

Ac = [ -0.1002 -0.0068 
0.0271 -0.0006 

cc = [ 14.3184 -0.7154 ] , Dc = -0.3056. 

We can thus have the state-space model of the close-loop 
system in the form of (13) and the corresponding transfer 
functions as follows: 

T Z W ,  = C ( Z  - A)-lB1 + D1 
Tzw, = C(Z - A)-'& + D z ,  

where 2 = diag{zhIz,z,I2}. In addition, Figure 2 and 
Figure 3 show the magnitude of frequency responses of the 
closed-loop systems T,,, (eJ"", .due) and T,,, (P", ejuv) ,  
respectively, over all frequencies, where 1.0 corresponds to 
w .  From Figure 3, it  can be known that the maximum value 
of T z w 2 ( e ~ u ~ L , e ~ u v )  is 0.0411 which is below the specified 
upper bound yz = 0.05. 

,.... : .  ... 
, . , . j :. . .. . ..: . 

. .  .... . ...... :. . . 

I 

Figure 2: The frequency response of T,,, (d"" 9 )  

Figure 3: The frequency response of Tzwz (ej"", e j " v )  

6.2 Robust H z I H ,  control of heat exchanger 
We further consider the case that the heat exchanger sys- 
tem (46) is subject to polytopic parameter uncertainties 
such that the system matrices of its Roesser model belong 
to the 2-polytopic convex polyhedron in the form of (14): 
where 

13.4222 0 
x = [  0 6 . 9 4 7 0 ] ' y = [ , 1 8 * p 7  9 & 7 9 ] '  

1 0.2763 -0.3362 
-0.1010 0.1217 ' ] ,e= [ 0 

0 -0.5433 

-0.2592 r = [ -o,0173 ] , A  = [ 0.3895 -1.2903 3 . 

Then, choose U = [: ; ] j 5 0  

Therefore, we obtain the robust H 2 / H ,  controlIer of the 
form (12) with 

-0.2285 0.1646 ] [ -0.0193 ] 
0.1614 -0.1152 j B c  = -0.0025 ' A c =  [ 

Cc = [ -4.3236 8.4803 ] , D c  = -3.2342. 
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Let the actual 2-D system be obtained from the above twc- 
vertex polytope with €1 = 0.7 and €2 = 0.3. The frequency 
responses of T',, and Tzw2 defined as (48) are shown in 
Figure 4 and Figure 5 ,  respectively. We can find that the 
specified H2 and H ,  performances are met. 

... '!.. . 

Figure 4: The frequency response of T,,, (e?"", ej"") 

Figure 5: The frequency response of TZw2 ( e j w h ,  ej"") 

7 Conclusion 

In this paper, we extended the classical definition of the HZ 
performance to  2-D systems and presented a sufficient con- 
dition for evaluation of the H2 performance of 2-D system 
in Roesser model. Using this condition and the existing 
bounded rea1 lemma for 2-D systems, we develop system- 
atic design methods for mixed H z / H ,  and robust H z / H ,  
control of 2-D systems in Roesser model. The solutioris for 
the H z / H ,  control are in the form of LMIs which can be 
efficiently computed by existing software. 
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